The Boundary Element Method for Acoustics and Fluid-Structure interaction problems

Prof. Demosthenes Polyzos¹

Dr. Theodore Gortsas^{1,2}

Department of Mechanical and Aeronautical Engineering,
University of Patras
Greece

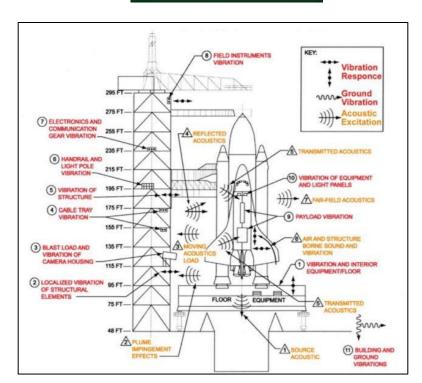
Department of Mechanical Engineering,
University of Peloponnese
Greece

1) Motivation: Engineering problems and numerical tools

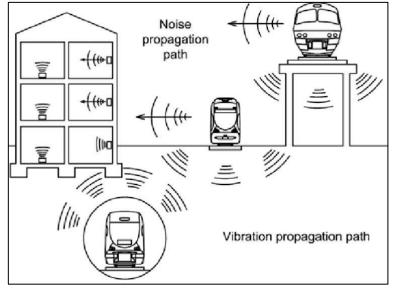
2) Physics and mathematical modelling

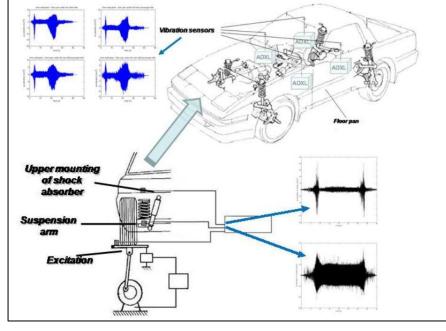
3) Boundary Element Method

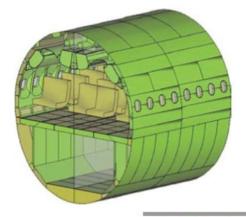
Railway Noise and Vibration Machanisms, Madelling and Messes of Control Boyld Thampson



Engineering Vibroacoustic problems







Biomechanics

J. Mech. Phys. Solids 150 (2021) 104369

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

Effect of receptors on the resonant and transient harmonic vibrations of Coronavirus

Tomasz Wierzbicki*, Wei Li, Yuming Liu, Juner Zhu

Department of Mechanical Engineering, MIT, United States

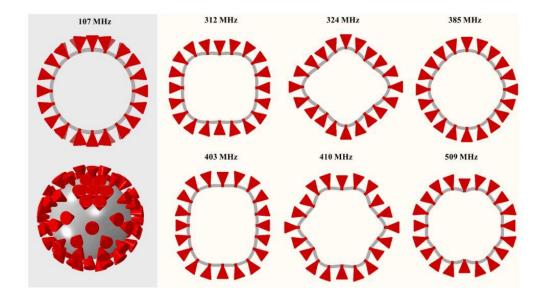
ARTICLEINFO

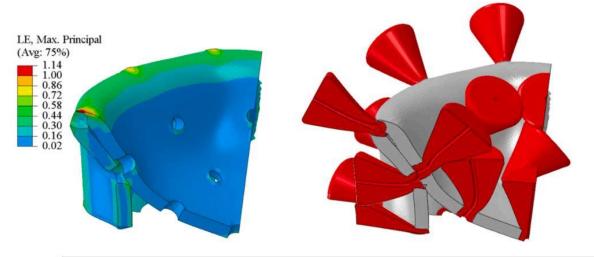
Keywords:
Ultrasound excitations
Coronavirus family
Collapse of lipid bi-layer envelope
Resonant and transient vibrations of spikes
Large tensile strains

Disruption of life-cycle of coronaviruses

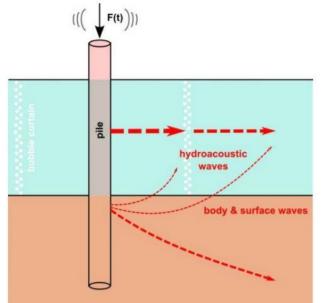
ABSTRACT

The paper is concerned with the vibration characteristics of the Coronavirus family. There are some 25-100 receptors, commonly called spikes protruding from the envelope shell of the virus. Spikes, resembling the shape of a hot air balloon, may have a total mass similar to the mass of the lipid bi-layer shell. The lipid proteins of the virus are treated as homogeneous elastic material and the problem is formulated as the interaction of thin elastic shell with discrete masses, modeled as short conical cross-sectional beams. The system is subjected to ultrasonic excitation. Using the methods of structural acoustics, it is shown that the scattered pressure is very small and the pressure on the viral shell is simply the incident pressure. The modal analysis is performed for a bare shell, a single spike, and the spike-decorated shell. The predicted vibration frequencies and modes are shown to compare well with the newly derived closed-form solutions for a single spike and existing analytical solutions for thin shells. The fully nonlinear dynamic simulation of the transient response revealed the true character of the complex interaction between local vibration of spikes and global vibration of the multi-degree-of-freedom system. It was shown that harmonic vibration at or below the lowest resonant modes can excite large amplitude vibration of spikes. The associated maximum principal strain in a spike can reach large values in a fraction of a millisecond. Implications for possible tearing off spikes from the shell are discussed. Another important result is that after a finite number of cycles, the shell buckles and collapses, developing internal contacts and folds with large curvatures and strains exceeding 10%. For the geometry and elastic properties of the SARS-CoV-2 virus, these effects are present in the range of frequencies close to the ones used for medical ultrasound diagnostics.





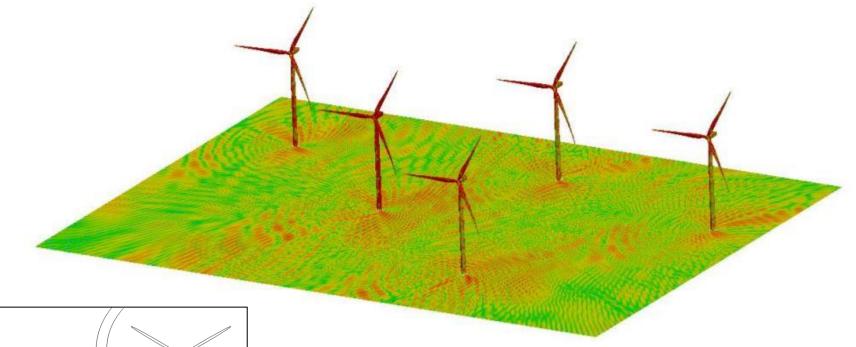
Wind turbines

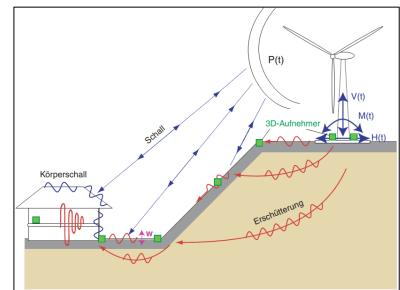


Impact hammer

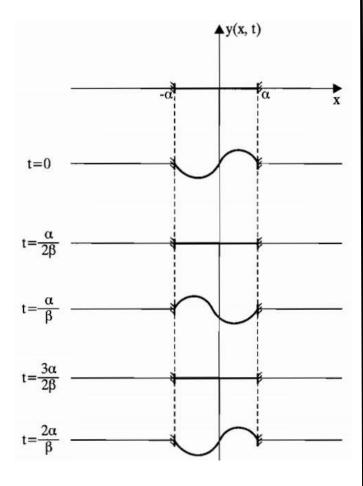
Vibratory device

Wind turbines acoustic and elastic wave propagation





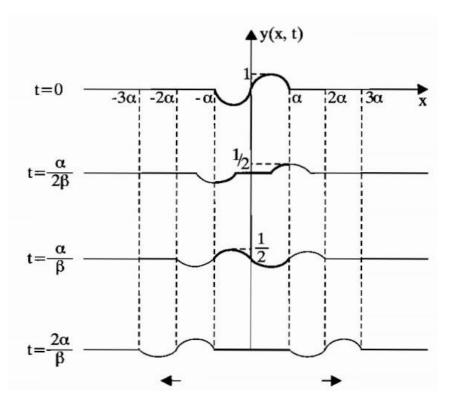
Vibration



Discrete systems

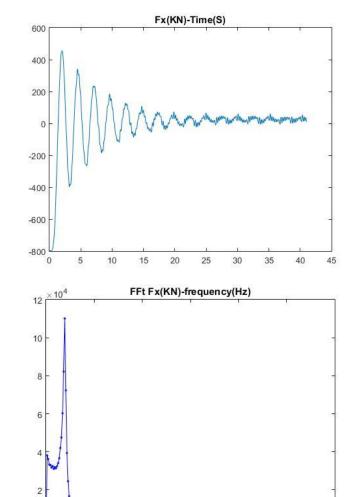
$$[\mathbf{M}]\ddot{\mathbf{x}}(t) + [\mathbf{C}]\dot{\mathbf{x}}(t) + [\mathbf{K}]\mathbf{x}(t) = \mathbf{f}(t)$$

Wave propagation

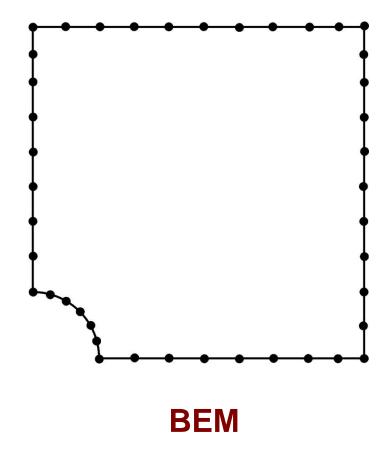


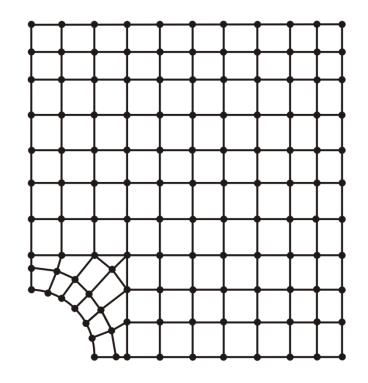
Infinite or semi - infinite domains

Time Domain – Frequency domain analysis

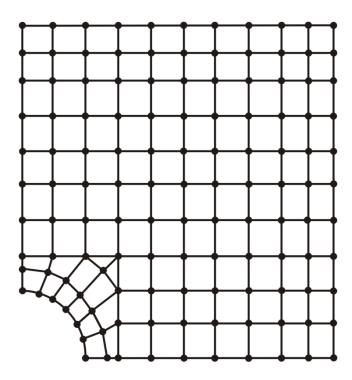


Numerical Methods - Vibroacoustics





FEM

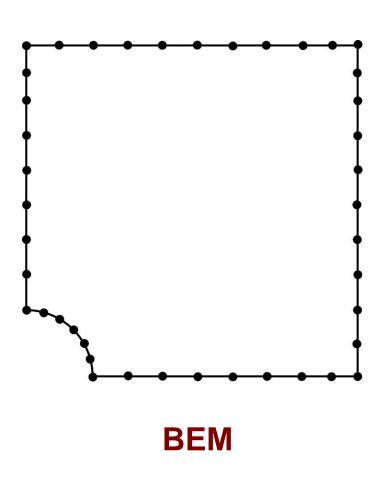


FEM

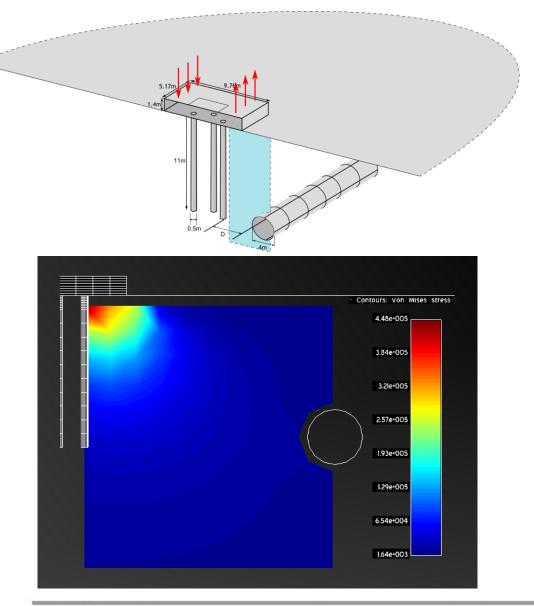
Workshop 1: Numerical simulations for Wind Turbine engineering problems

A. 1 st Bend	B. Torsion	C. 2 nd Bending A	D. 2 ^{na} Bending B
0.45 Hz	3.0 Hz	4.1 Hz	4.6 Hz
20			5

$$-\omega^{2} [\mathbf{M}] \cdot \mathbf{A} + [\mathbf{K}] \cdot \mathbf{A} = 0$$
$$\mathbf{x}(t) = \mathbf{A}e^{-i\omega t}$$



Workshop 1: Numerical simulations for Wind Turbine engineering problems

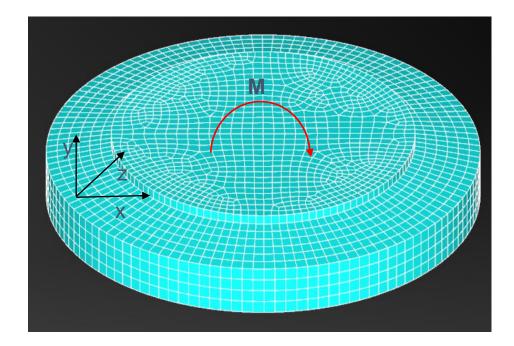


FEM or BEM?

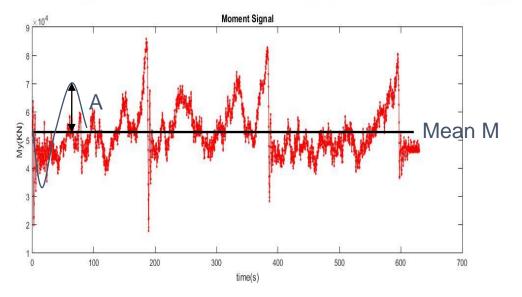
 Knowing the advantages and disadvantages of each method makes it possible to choose the most appropriate tool for each task.

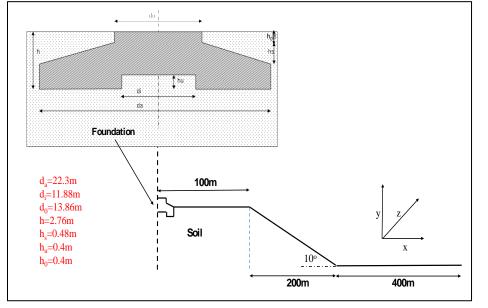
 P. K. Banerjee: "Changes in the geometric configurations are very easy to incorporate on a surface mesh. Additionally, most of today's analysis problems are so complex that engineers would love to have two vastly different analysis tools (FEM and BEM) to produce similar answers."

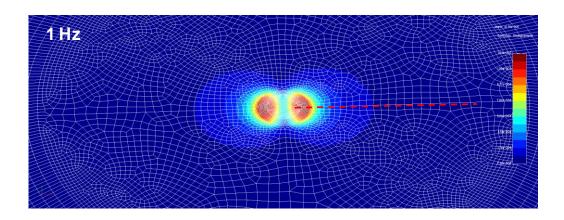
WT foundation moment loading

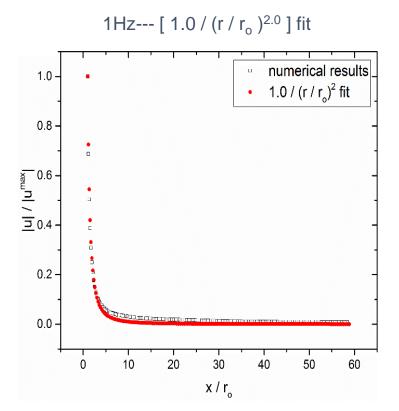


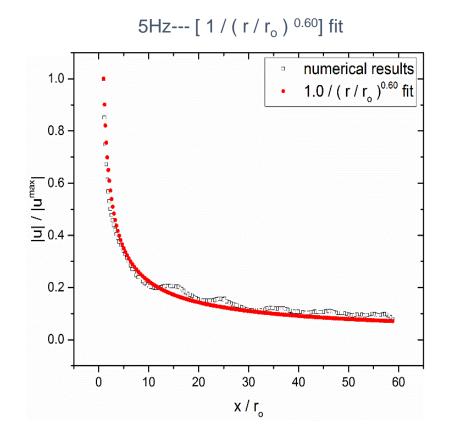
Workshop 1: Numerical simulations for Wind Turbine engineering problems









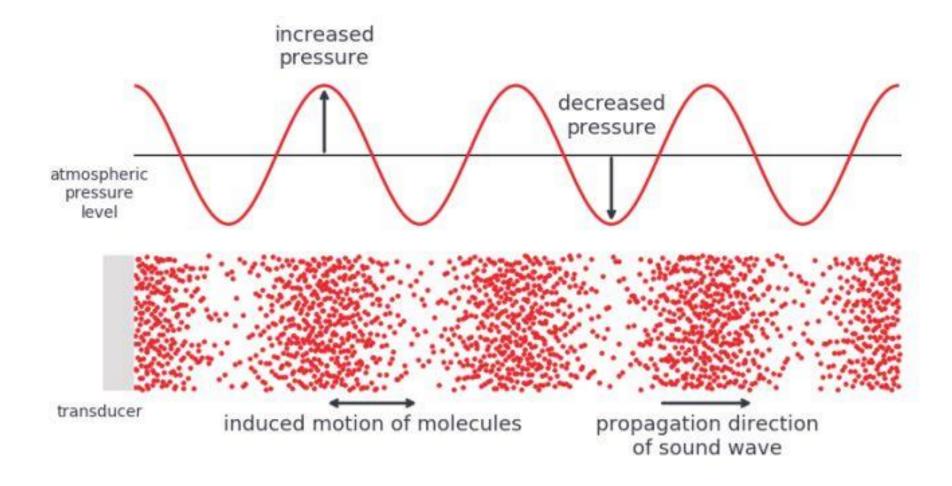


1) Motivation: Engineering problems and numerical tools

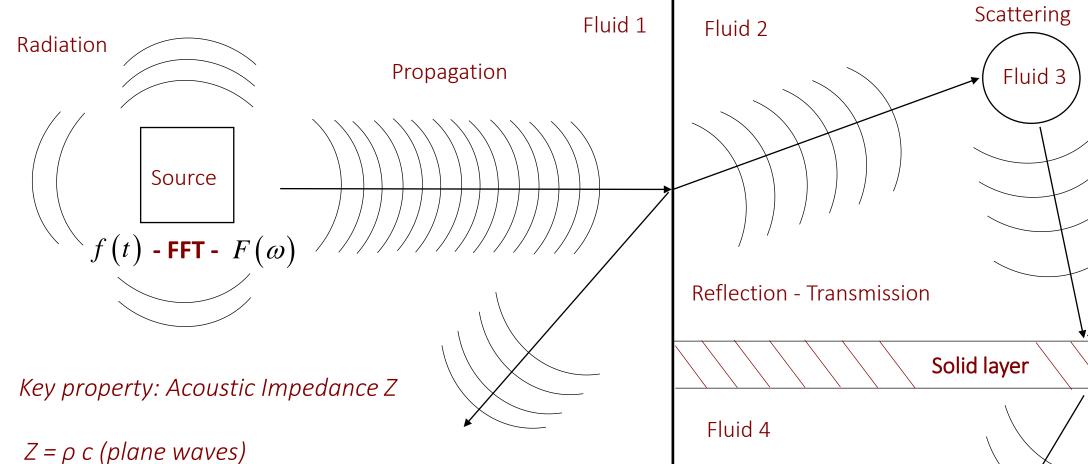
2) Physics and mathematical modelling

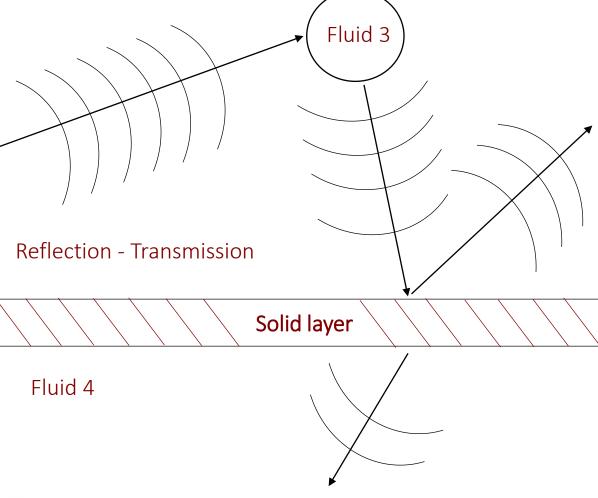
3) Boundary Element Method

Acoustic waves

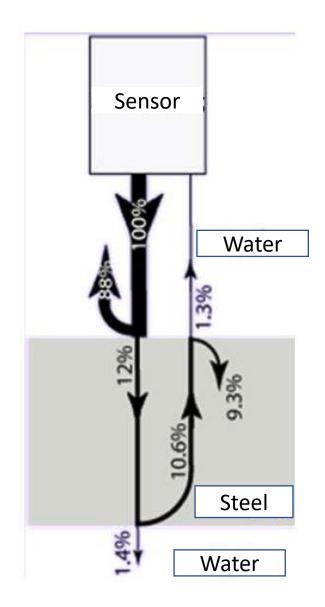


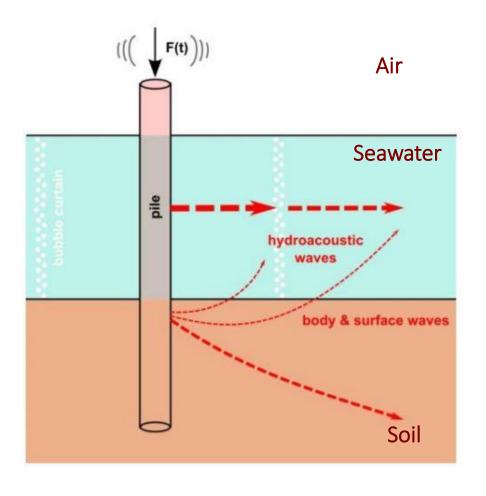
ACOUSTIC WAVE PHENOMENA





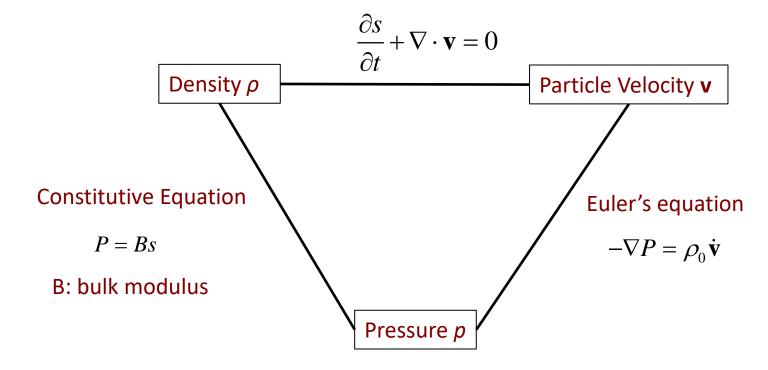
The impact of impedance difference





Mathematical modelling

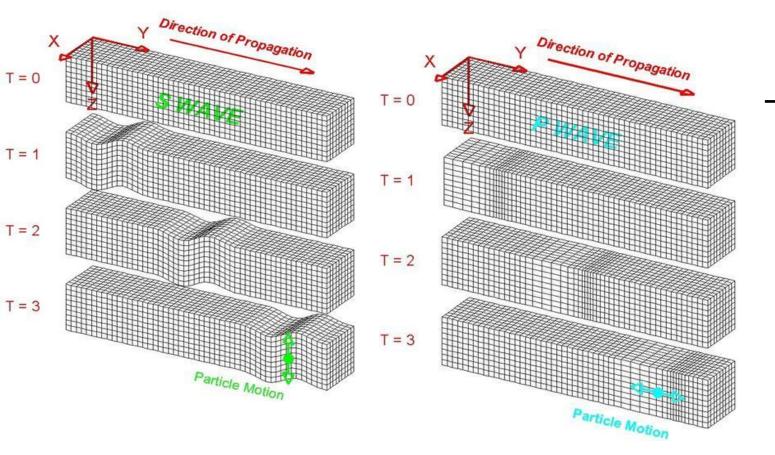
Continuity equation

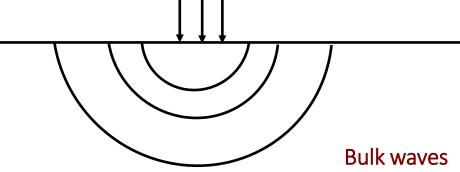


Linear acoustics assumptions

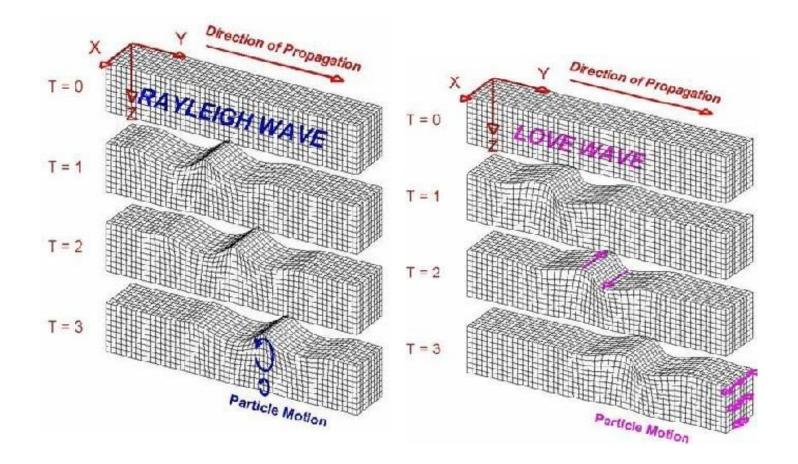
- Small amplitude disturbances
- **v** << c
- s << 1
- Adiabatic conditions

ELASTIC WAVES

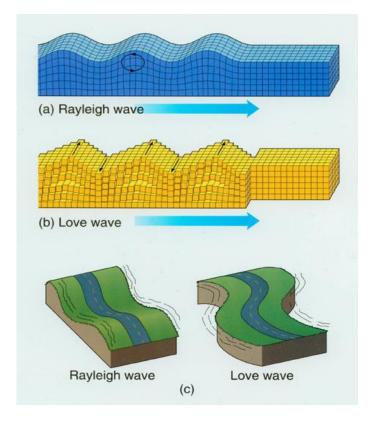




ELASTIC WAVES

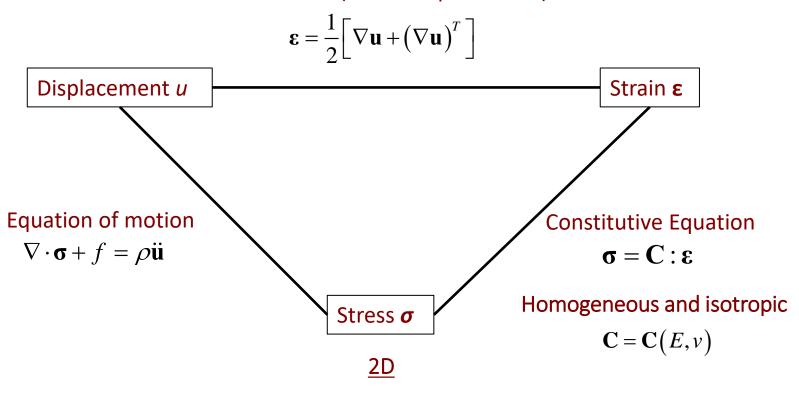


Surface waves



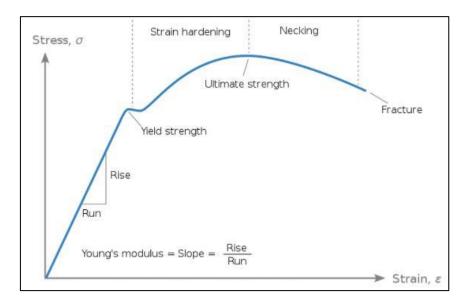
Mathematical modelling

Kinematic (Strain-displacement)



Linear elasticity assumptions

- Linear material behavior
- Small strains



Equations in the time domain

Elastodynamics

$$\mu \nabla^2 \mathbf{u}(\mathbf{x}, t) + (\lambda + \mu) \nabla \nabla \cdot \mathbf{u}(\mathbf{x}, t) = \rho \ddot{\mathbf{u}}(\mathbf{x}, t)$$

$$\mu = \frac{E}{2(1+v)}, \lambda = \frac{Ev}{(1+v)(1-2v)}$$

 λ , μ Lame parameters

Acoustics

$$\nabla^2 p(\mathbf{x},t) = \frac{1}{c^2} \ddot{p}(\mathbf{x},t), \ c^2 = \frac{\gamma P_0}{\rho_0}$$

Boundary Conditions

$$\mathbf{u}(\mathbf{x},t) = \mathbf{u}^b(\mathbf{x},t) \quad \mathbf{x} \in S_u \\ \mathbf{t}(\mathbf{x},t) = \mathbf{t}^b(\mathbf{x},t) \quad \mathbf{x} \in S_t$$
 $S = S_u \cup S_t$

Initial Conditions

$$\mathbf{u}(\mathbf{x},0) = \mathbf{u}^{V}(\mathbf{x}) \quad \mathbf{x} \in V$$

Boundary Conditions

$$p(\mathbf{x},t) = p^{b}(\mathbf{x},t) \qquad \mathbf{x} \in S_{p}$$

$$\frac{\partial p}{\partial n}(\mathbf{x},t) = \frac{\partial p}{\partial n}(\mathbf{x},t) \qquad \mathbf{x} \in S_{q}$$

$$S = S_{p} \cup S_{q}$$

Initial Conditions

$$p(\mathbf{x},0) = p^{V}(\mathbf{x}) \quad \mathbf{x} \in V$$

Frequency domain solutions

$$\mu \nabla^2 \mathbf{u}(\mathbf{x}, t) + (\lambda + \mu) \nabla \nabla \cdot \mathbf{u}(\mathbf{x}, t) = \rho \ddot{\mathbf{u}}(\mathbf{x}, t)$$

$$\mathbf{u}(\mathbf{x},\mathbf{t}) = \overline{\mathbf{u}}(\mathbf{x},\omega)e^{i\omega t}$$

$$\mu \nabla \overline{\mathbf{u}}(\mathbf{x}, \omega) + (\lambda + \mu) \nabla \nabla \cdot \overline{\mathbf{u}}(\mathbf{x}, \omega) + \rho \omega^2 \overline{\mathbf{u}}(\mathbf{x}, \omega) = 0$$

Equations in the frequency domain

Elastodynamics

$$\mu \nabla^2 \mathbf{u}(\mathbf{x}, \omega) + (\lambda + \mu) \nabla \nabla \cdot \mathbf{u}(\mathbf{x}, \omega) + \rho \omega^2 \mathbf{u}(\mathbf{x}, \omega) = \mathbf{0}$$

Boundary Conditions

$$\mathbf{u}(\mathbf{x},\omega) = \mathbf{u}^{b}(\mathbf{x},\omega) \quad \mathbf{x} \in S_{u}$$

$$\mathbf{t}(\mathbf{x},\omega) = \mathbf{t}^{b}(\mathbf{x},\omega) \quad \mathbf{x} \in S_{t}$$

$$S = S_{u} \cup S_{t}$$

Acoustics

$$\nabla^2 p(\mathbf{x}, \omega) + \left(\frac{\omega}{c}\right)^2 p(\mathbf{x}, \omega) = 0, \ c^2 = \frac{\gamma P_0}{\rho_0}$$

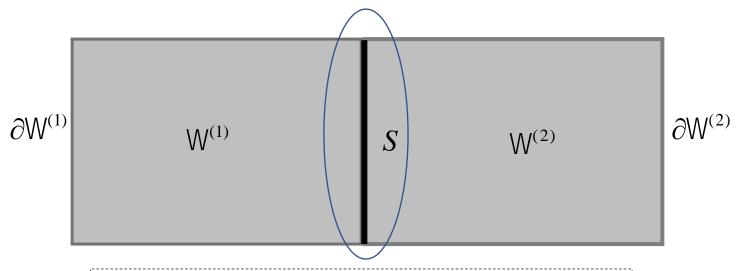
Boundary Conditions

$$p(\mathbf{x}, \omega) = p^{b}(\mathbf{x}, \omega) \qquad \mathbf{x} \in S_{p}$$

$$\frac{\partial p}{\partial n}(\mathbf{x}, \omega) = \frac{\partial p}{\partial n}(\mathbf{x}, \omega) \qquad \mathbf{x} \in S_{q}$$

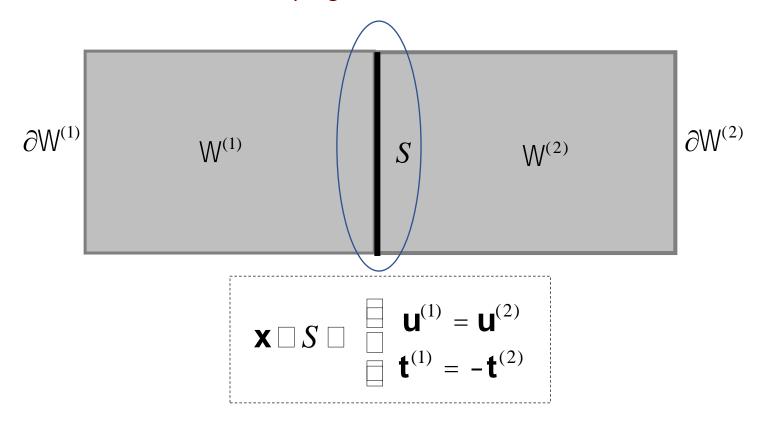
$$S = S_{p} \cup S_{q}$$

Coupling acoustic domains

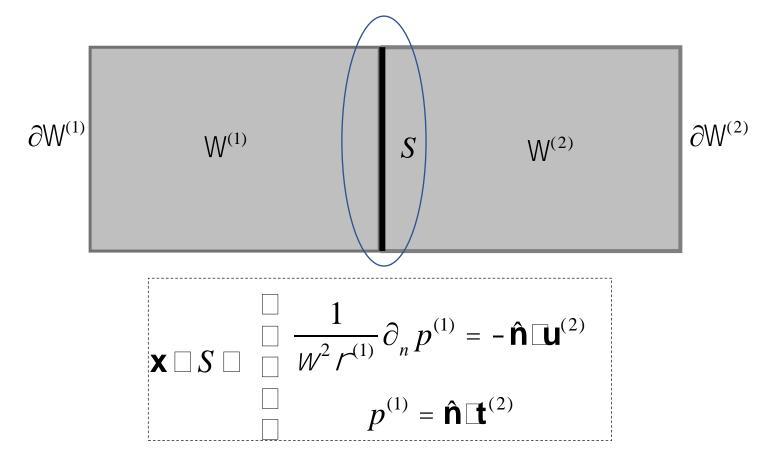


$$\mathbf{x} \in S \Rightarrow \begin{cases} p^{(1)} = p^{(2)} \\ \frac{1}{p^{(1)}} \partial_n p^{(1)} = -\frac{1}{p^{(2)}} \partial_n p^{(2)} \end{cases}$$

Coupling elastic domains



Coupling acoustic elastic domains



1) Motivation: Engineering problems and numerical tools

2) Physics and mathematical modelling

3) Boundary Element Method

--- Workshop 1: Numerical simulations for Wind Turbine engineering problems

BEM in acoustics and fluid structure interaction

