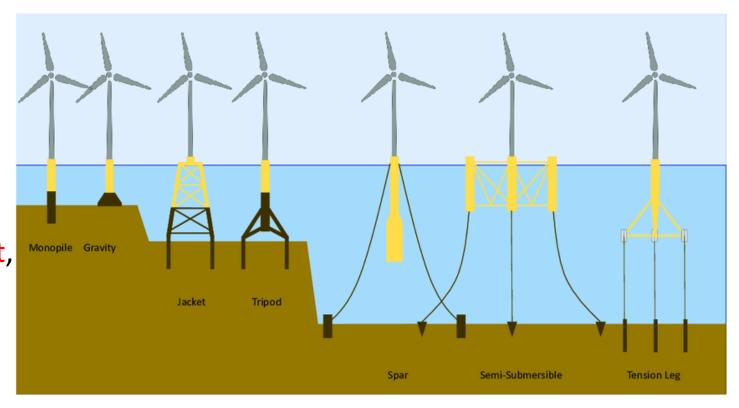
Introduction to offshore wind turbines (OWTs)

Athanassios A. Dimas

Department of Civil Engineering, University of Patras

Outline

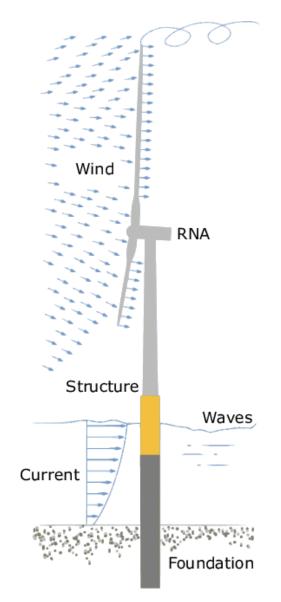
- 1. Support structure configurations
- 2. Analysis and design elements of OWTs
- 3. Offshore wind farms: from planning to operation



1. Support structure configurations

- Fixed OWTs
- Floating OWTs
- Issues:

Metocean, Fabrication, Transport,
Installation, Soils, Moorings,
Tower and Turbine Specification


• Environmental forces: wind, waves and currents

1.1 Fixed OWTs: Monopile

Water depth: 50 m and going up

Supporting structure pile diameter: 10 m and going up

Foundation: tradeoff as stiff soil increases natural frequency

but hinders drivability, care for scour

Example from the Veja Mate offshore wind farm in the North Sea 130 km north of Germany: length 82.2 m, diameter 7.8 m, for water depth ~40 m

1.1 Fixed OWTs: Gravity Base

Water depth: 40 m and going up
Produced in land and self-floating transport to location
Foundation: risk of liquefaction induced by cyclic loads,
care for scour

Example from the Blyth offshore wind demonstration project in the North Sea off the Scotland coast: height 60 m, base diameter 31 m, for water depth ~40 m

1.1 Fixed OWTs: Jacket

Water depth: 50 m and going up
Produced in land and transported to location by barges
Foundation: fatigue performance for combined
hydrodynamic and aerodynamic loads

Example from the TPC offshore wind farm 8 km off the west coast of Taiwan: height 55-62 m, anchored to the seabed by four pin piles of 3.1 m diameter each.

1.1 Fixed OWTs: Tripod

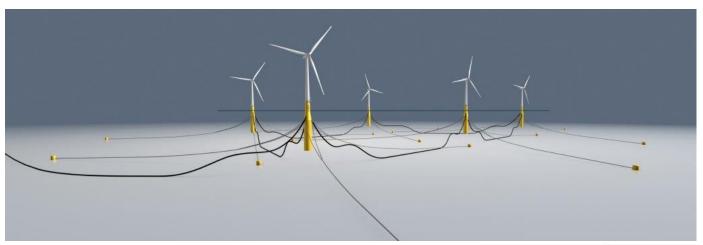
Water depth: 50 m and going up

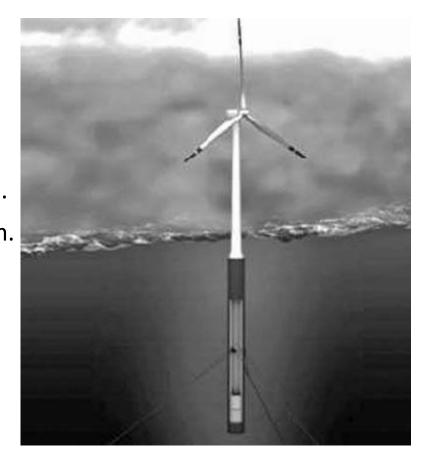
Produced in land and transported to location by barges

Foundation: stiffer and cheaper than jacket

Performance: less resonant with waves

Example from the Germany
Global Tech I offshore wind farm.
Each tripod foundation weighs 900 T,
stands 60 m high and takes around
four months to produce.





1.2 Floating OWTs: Spar-Buoy

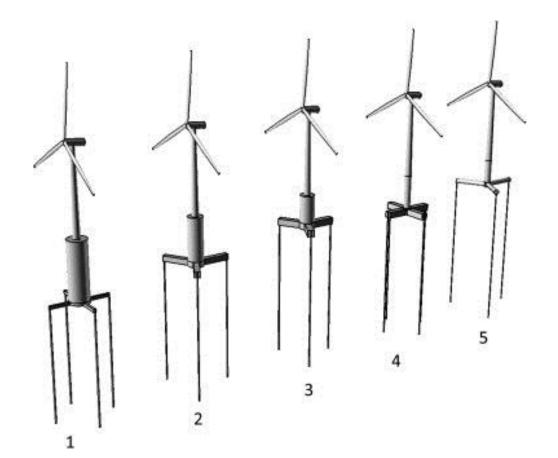
Example (www.equinor.com): The 30 MW Hywind Scotland wind farm in the North Sea, which comprises five 6 MW turbines. The rotor diameter is 154 m and the overall height is 253 m. The pilot farm covers around 4 km² in water depths between 95-130 m. The average wind speed is 10 m/s and the average wave height is 1.8 m. The export cable length to shore is 30 km.

1.2 Floating OWTs: Barge

Example (www.bw-ideol.com): Floatgen is a 2 MW floating wind turbine demonstrator installed 12 miles off the coast of Le Croisic, France, at water depth of 33 m. The patented Damping Pool ® floating foundation: hull edge dimensions 36×36 m, draught 7.5 m, 6 synthetic fiber (nylon) mooring lines.

1.2 Floating OWTs: Semi-Submersible

Example (www.edp.com): The WindFloat Atlantic wind farm is located 20 km off the coast of Portugal, at Viana do Castelo, at water depth of 100 m, and 3 OWTs. Each floating structure – measuring 30 m high and with a 50 m distance between its columns – supports a large wind turbine of 8.4 MW production capacity.



1.2 Floating OWTs: Tension-Leg

Several concepts; no field examples.

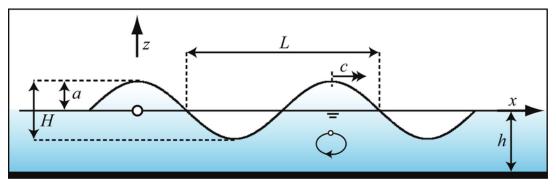
Additional issues for **fixed OWTs** with respect to onshore ones:

- Loads (pressure and forces) due to waves and currents
- Foundation scour due to the action of waves and currents

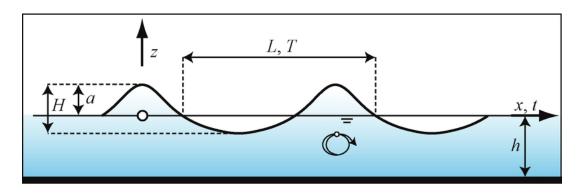
Additional issues for **floating OWTs** with respect to onshore ones:

- Loads (pressure and forces) due to waves and currents
- Mooring forces
- Six-degree of freedom motion

Wave parameters:


H: wave height

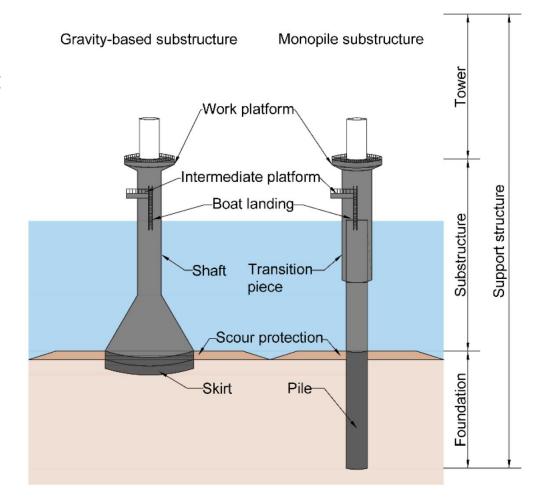
L: wavelength


T: wave period

Irregular waves

Regular (monochromatic) linear waves

Regular (monochromatic) nonlinear waves


Forces induced by waves and currents depend on:

D: typical horizontal cross-sectional dimension of support structure

H: wave height

L: wavelength

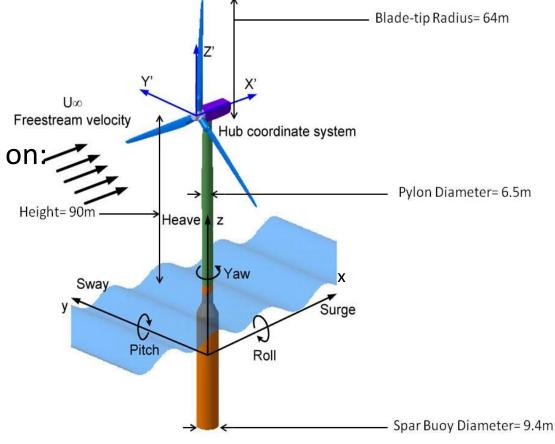
U: current velocity

• Six-degree of freedom motion:

Linear motions: surge, heave, sway

Rotational motions: pitch, roll, yaw

Forces induced by waves and currents depend on:


D: typical horizontal cross-sectional dimension of support structure

H: wave height

L: wavelength

U: current velocity

Mooring forces should also be accounted for.

Equations of motion of floating OWTs:

$$\sum_{k=1}^{6} \left(\left(M_{jk} + A_{jk} \right) \frac{d^{2} \zeta_{k}}{dt^{2}} + B_{jk} \frac{d \zeta_{k}}{dt} + C_{jk} \zeta_{k} \right) = F_{j}$$

where ζ_k (k=1,2,...6) are the OWT motions w.r.t. the equilibrium position, M_{jk} , A_{jk} , B_{jk} and C_{jk} are the mass, added mass, damping, and restoring (including mooring) forcing terms, respectively, of the "j" degree-of-freedom due to unit motion of the "k" degree-of-freedom, and F_j are the external applied forces due to wind, waves, and/or currents.

3. Offshore wind farms: from planning to operation

Every project is divided into three phases:

- Planning (2-4 years)
 Site selection and feasibility; Environmental impact assessment;
 Approvals, licenses and permits
- Construction (1-2 years)
 Planning; Manufacturing; Deployment; Installation;
 Managerial and financial issues
- Operation (25 years plus M&D)
 Maintenance; Environmental monitoring; Decommissioning

3. Offshore wind farms: Planning

Three key selection factors for offshore wind farm locations:

- Available wind energy
- Electric grid connectivity
- Installation site conditions

Data that should be considered can be divided into two groups:

- Restricted areas in the vicinity of the potential offshore wind farm
- Environmental/technical/financial/social parameters in the region of the potential offshore wind farm

3. Offshore wind farms: Planning

In the first group, all relevant restrictions, either natural or anthropogenic, should be identified that prohibit the use or proximity of a particular region to the potential offshore wind farm. Such regions are:

- Harbour entrances and navigation routes
- Areas with environmental restrictions
- Oil and gas extraction
- Military exercise areas
- Underwater cables
- Marine archaeology sites
- Landscape and seascape as public heritage

3. Offshore wind farms: Planning

The second group includes all the environmental/technical/financial/social constraints/parameters that should be evaluated regarding the suitability of a location for the construction of an offshore wind farm:

Marine mammals	Wind energy resource	Investment costs	Social acceptability
Fish and shellfish	Water depth	Energy production capacity	Visual impacts
Birds and bats	Distance to shore	Realization time	Safety
Aquaculture	Seabed geology	CO2 emissions avoidance	Leisure and tourism
Disposal Sites	Cables and pipelines	Shipping and navigation	Archaeology
Commercial and sport fisheries	Onshore and offshore substations	Size of available sea area	Acoustic noise

3. Offshore wind farms: Construction

The most important aspects of the construction phase are:

- Construction planning
- Geotechnical and geophysical surveys
- Onshore and offshore substation installation
- Onshore/intertidal cable installation

3. Offshore wind farms: Construction

- Onshore manufacturing of support structures
- Transport and installation of support structures
- Transport and installation of towers, nacelles and rotors
- Offshore cable installation

3. Offshore wind farms: Operation

The most important aspects of the operation phase are:

- Electricity production
- Inspections: foundations, structure integrity, corrosion, blades, cables, etc.
- Maintenance: turbines, bird guano, health & safety monitoring/management, etc.
- Decommissioning: recycle

Outlook

Today, 8 MW turbines are in operation.

A 14 MW turbine has been introduced; the GE Haliade-X offshore turbine features a 14 MW, 13 MW or 12 MW capacity, a 220-meter rotor, and a 107-meter blade.

