
Advanced Methods in modelling cumulative soil behavior for foundation systems of Wind Turbines

Dr.-Ing. Merita Tafili

Chair of Soil Mechanics, Foundation Engineering and Environmental Geotechnics Ruhr-Universität Bochum, Germany

RUB

Outline

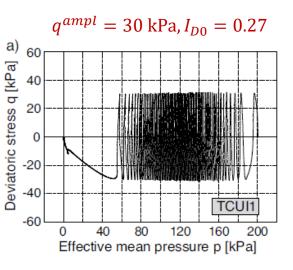
- Motivation
- Soil behaviour under cyclic loading
 - o sands under undrained and drained triaxial cyclic loading
 - clays under undrained triaxial cyclic loading
- Conventional constitutive models under low to medium-cycle loading
 - Ingredients
 - Constitutive anamnesis model
- High cyclic accumulation (HCA) model
 - HCA for sand
 - HCA for clay
- Back-analysis of centrifuge tests on monopiles in soft clay
- Summary and Conclusions

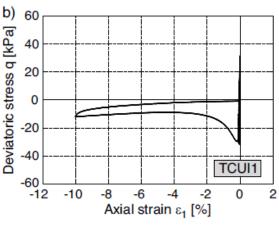
Motivation

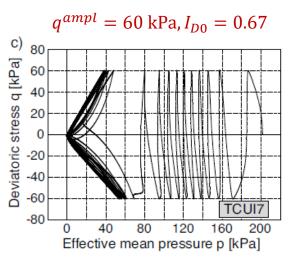
- Cyclic loading from e.g. wind and waves
- Decrease of the effective stress
- Increase of excess pore water pressure
- Decrease of the stiffnes of the soil
- Accumulation of deformation under medium- and highcycle loading of foundations
- Serviceability problem

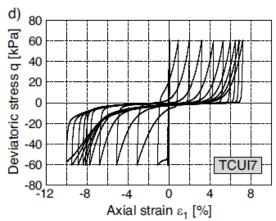
Outline

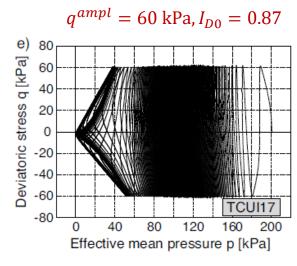
- Motivation
- Soil behaviour under cyclic loading
 - o sands under undrained and drained triaxial cyclic loading
 - clays under undrained triaxial cyclic loading
- Conventional constitutive models under low to medium-cycle loading
 - Ingredients
 - Constitutive anamnesis model
- High cyclic accumulation (HCA) model
 - HCA for sand
 - HCA for clay
- Back-analysis of centrifuge tests on monopiles in soft clay
- Summary and Conclusions

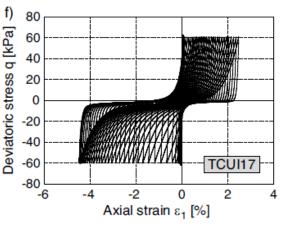




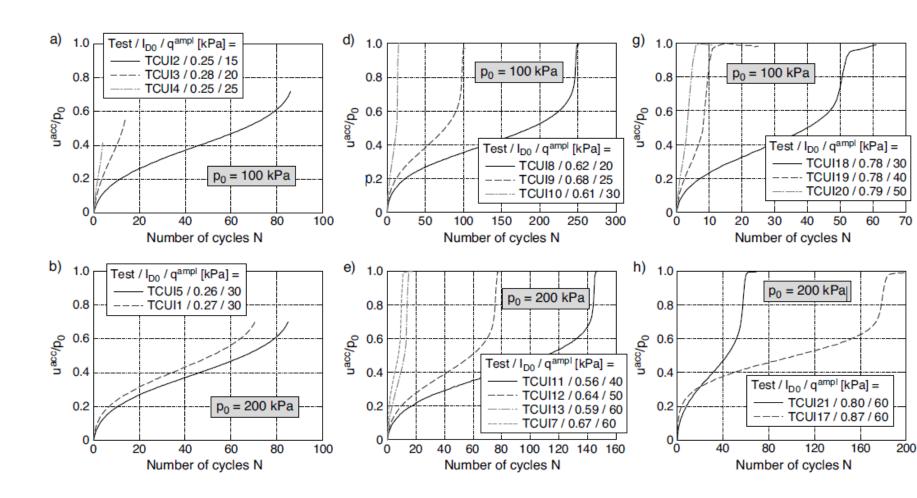

Soil behaviour under cyclic loading


- Sand undrained triaxial tests
 - o variation of deviatoric stress amplitude q^{ampl}
 - \circ variation of initial relative density I_{D0}


$$q^{ampl} \uparrow \Rightarrow N \downarrow$$
$$I_{D0} \uparrow \Rightarrow N \uparrow$$



(Wichtmann&Triantafyllidis 2016)

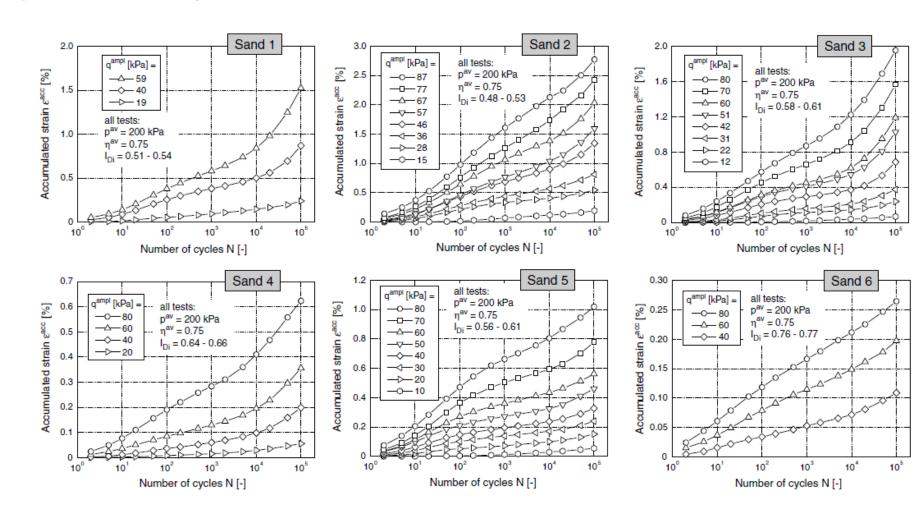


Soil behaviour under cyclic loading

- Sand
 undrained triaxial tests
 - variation of deviatoric
 stress amplitude q^{ampl}
 - variation of initial relative density I_{D0}
 - variation of initial
 mean pressure p_0

$$q^{ampl} \uparrow \Rightarrow N \downarrow \Rightarrow u^{acc} \uparrow$$
 $I_{D0} \uparrow \Rightarrow N \uparrow \Rightarrow u^{acc} \downarrow$
 $p_0 \uparrow \Rightarrow N \uparrow \Rightarrow u^{acc} \downarrow$

(Wichtmann&Triantafyllidis 2016)

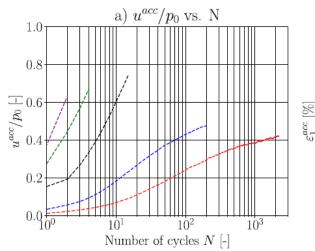

Soil behaviour under cyclic loading

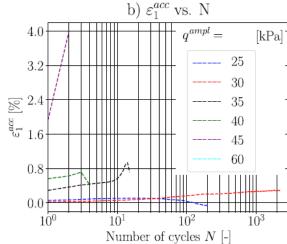
- Sand drained triaxial tests
 - o variation of deviatoric stress amplitude q^{ampl}
 - \circ variation of initial relative density I_{D0}
 - variation of initial
 stress ratio η_0

$$q^{ampl} \uparrow \Rightarrow N \downarrow \Rightarrow \varepsilon^{acc} \uparrow$$

$$I_{D0} \uparrow \Rightarrow N \uparrow \Rightarrow \varepsilon^{acc} \downarrow$$

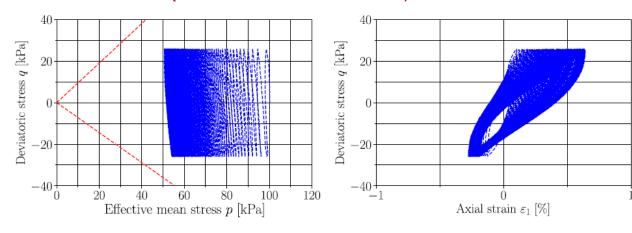
$$\eta_0 \uparrow \Rightarrow N \uparrow \Rightarrow \varepsilon^{acc} \downarrow$$

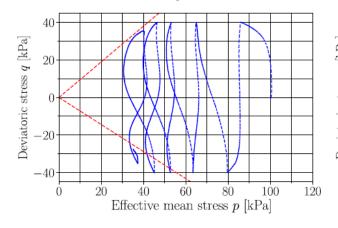

(Wichtmann et al. 2009)

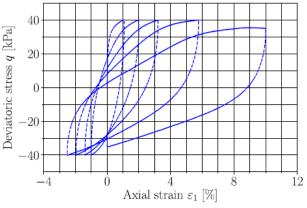


Workshop 2: Study of structural and foundation systems of Wind Turbines

Soil behaviour under cyclic loading


- Clay undrained triaxial tests
 - \circ variation of deviatoric stress amplitude q^{ampl}

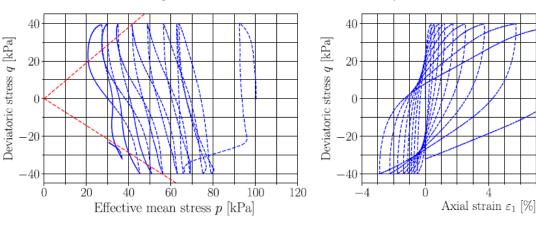



$$q^{ampl} \uparrow \Rightarrow N \downarrow \Rightarrow \varepsilon^{acc} \uparrow$$

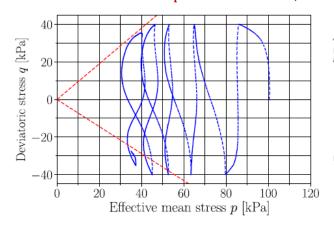
$q^{ampl} = 30 \text{ kPa}, \dot{s} = 0.02 \text{ mm/min}$

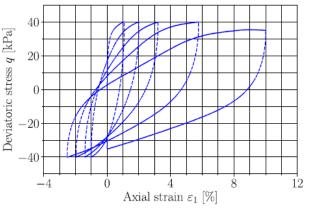
$q^{ampl} = 40 \text{ kPa}, \dot{s} = 0.02 \text{ mm/min}$

(Tafili et al. 2019, 2020)


Workshop 2: Study of structural and foundation systems of Wind Turbines

Soil behaviour under cyclic loading


- Clay
 - undrained triaxial tests
 - \circ variation of deviatoric stress amplitude q^{ampl}
 - o variation of initial void ratio e_0
 - \circ variation of initial stress ratio η_0
 - variation of displacement rate s̄


$$q^{ampl} \uparrow \Rightarrow N \downarrow \Rightarrow \varepsilon^{acc} \uparrow$$
$$\dot{s} \uparrow \Rightarrow N \uparrow \Rightarrow \varepsilon^{acc} \downarrow$$
$$\eta_0 \uparrow \Rightarrow N \uparrow \Rightarrow \varepsilon^{acc} \downarrow$$
$$e_0 \uparrow \Rightarrow N \downarrow \Rightarrow \varepsilon^{acc} \uparrow$$

$q^{ampl} = 40 \text{ kPa}, \dot{s} = 0.05 \text{ mm/min}$

$q^{ampl} = 40 \text{ kPa}, \dot{s} = 0.02 \text{ mm/min}$

(Tafili et al. 2019, 2020)

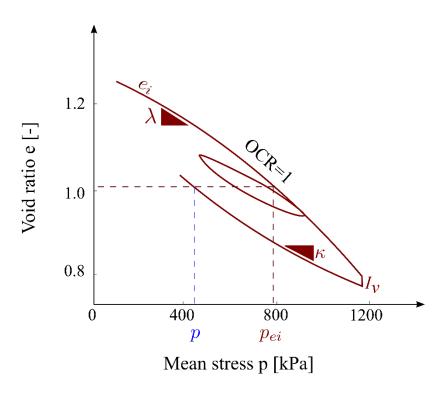
Outline

- Soil behaviour under cyclic loading
 - sands under undrained and drained triaxial cyclic loading
 - clays under undrained triaxial cyclic loading
- Conventional constitutive models under low to medium-cycle loading
 - Ingredients
 - Constitutive anamnesis model
- High cyclic accumulation (HCA) model
 - HCA for sand
 - HCA for clay
- Back-analysis of centrifuge tests on monopiles in soft clay
- Summary and Conclusions

Ingredients

$$\dot{p} = K \left(\dot{\varepsilon_v} - \dot{\varepsilon}_v^{hp} - \dot{\varepsilon}_v^{vis} \right)$$

- Bulk modulus
 - O Virgin loading $\dot{\varepsilon}_v = -\frac{\dot{e}}{1+e} \Rightarrow K = \frac{p}{\lambda} \frac{(1+e)}{(1-Y_{min})}$
- Non-linearity
 - Unloading and reloading


$$\dot{e} = -\kappa \frac{\dot{p}}{p} \Rightarrow Y_{min} = \frac{\lambda - \kappa}{\lambda + \kappa}$$

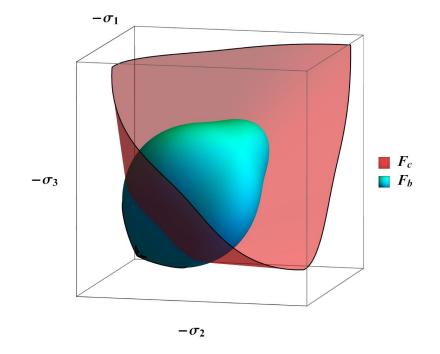
- Previous loading
 - Normally consolidated line \Rightarrow OCR = 1

$$e_{i} = (1 + e_{i0}) \left(\frac{p_{i0}}{p}\right)^{\lambda} - 1$$

$$\Rightarrow p_{ei} = p_{i0} \left(\frac{1 + e_{i0}}{1 + e}\right)^{1/\lambda}$$

$$OCR = \frac{p_{ei}}{p}$$

Ingredients

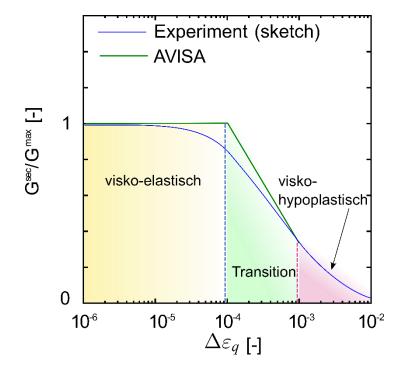

$$\dot{\boldsymbol{\sigma}} = \mathbf{E}: \left(\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}^{hp} - \dot{\boldsymbol{\varepsilon}}^{vis}\right) = \mathbf{E}: \left(\dot{\boldsymbol{\varepsilon}} - \mathbf{Ym} \|\dot{\boldsymbol{\varepsilon}}\| - I_v \lambda \left(\frac{1}{\mathsf{OCR}}\right)^{1/I_v} \mathbf{m}\right)$$

- Stiffness tensor E
- Critical state and Dilatancy rule
- Loading surface

o 3D:
$$F_b(\sigma) = \hat{\sigma}^* : \hat{\sigma}^* - \frac{2}{3f_b^2(M(\theta_{\sigma}))^2} = 0$$

$$f_b = f(e, e_i, e_c),$$

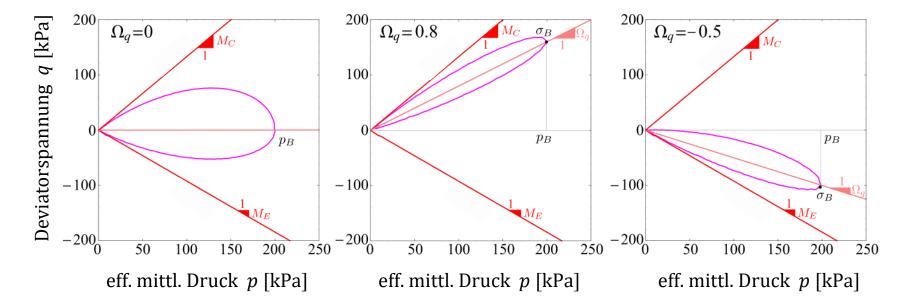
$$OCR = \frac{p_{ei}}{p_{ei}^+}, p_{ei}^+ = p_{i0} \left(\frac{1 + e_{i0}}{1 + e^+}\right)^{1/\lambda}$$



Ingredients

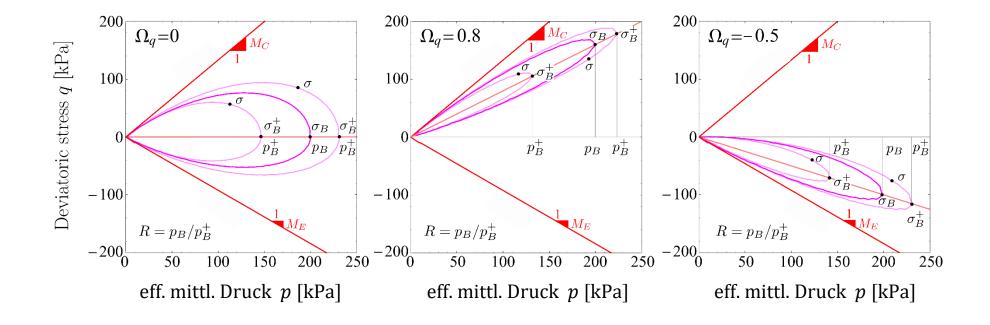
$$\dot{\boldsymbol{\sigma}} = \mathbf{E}: \left(\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}^{hp} - \dot{\boldsymbol{\varepsilon}}^{vis}\right) = \mathbf{E}: \left(\dot{\boldsymbol{\varepsilon}} - \mathbf{Ym} \|\dot{\boldsymbol{\varepsilon}}\| - I_v \lambda \left(\frac{1}{\mathsf{OCR}}\right)^{1/I_v} \mathbf{m}\right)$$

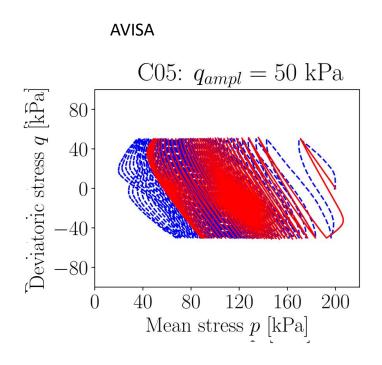
- Stiffness tensor E √
- Critical state and Dilatancy rule ✓
- Loading surface
- Shear modulus degradation
- Stiffness at small strains
- Anamnesis and
- Historiotropy of the soil

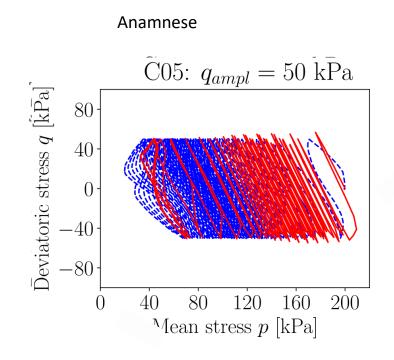


- Constitutive anamnesis model (PhD Tafili 2019)
 - Historiotropic surface with
 - evolving size ⇒ shear modulus degradation
 - o rotating bisector ⇒ induced anisotropy

$$F(\sigma, \sigma_B) = \mathbf{w} : \mathbf{w} - \frac{2}{3} M_w^2 \left[1 - \left(\frac{p}{p_B} \right)^{c_B} \right] \left[1 - \sqrt{\frac{3}{2}} \frac{\sqrt{\mathbf{\Omega} : \mathbf{\Omega}}}{M_{\Omega}} \right]^2$$

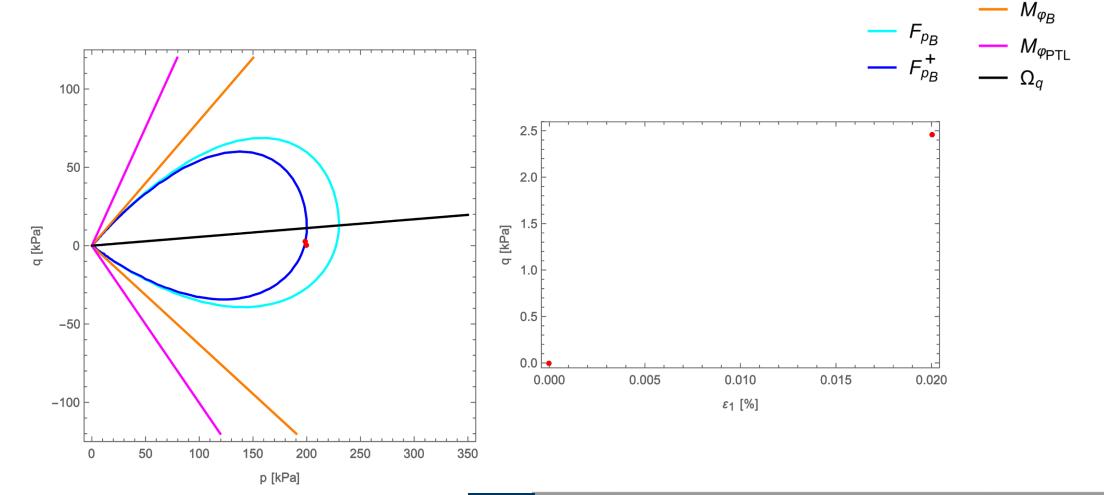

$$egin{aligned} oldsymbol{\sigma}_B &= p_B (-\mathbf{1} + oldsymbol{\Omega}) \ \mathbf{w} &= \widehat{oldsymbol{\sigma}}^* - oldsymbol{\Omega} \ \widehat{oldsymbol{\sigma}}^* &= oldsymbol{\sigma}^* / oldsymbol{p} \end{aligned}$$


- Constitutive anamnesis model (PhD Tafili 2019)
 - o loading surface (back stress) $\sigma_B = p_B(-1 + \Omega)$
 - o isotropic size $\dot{p}_B = -\frac{p_B}{\lambda} \operatorname{tr}(\dot{\boldsymbol{\varepsilon}}) \mathcal{C}_2(p p_B) \|\dot{\boldsymbol{\varepsilon}}^*\| R^{-n_0}$
 - O Bisector inclination $\dot{\Omega} = C_2(\widehat{\sigma}^* \Omega) \|\dot{\boldsymbol{\varepsilon}}\| R^{-n_0}$

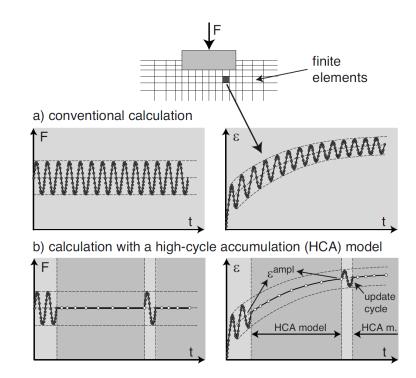


Constitutive anamnesis model – Simulation of a triaxial cyclic test

(Data: Tafili et al. 2019)


- accurate description of 8-shaped hystheresis
- o accurate reproduction of the number of cycles N up to $\|\varepsilon_1\| \le 10 \%$

 \circ Constitutive anamnesis model – Development of the hisotriotropic surface for $q_{ampl}=70~\mathrm{kPa}$

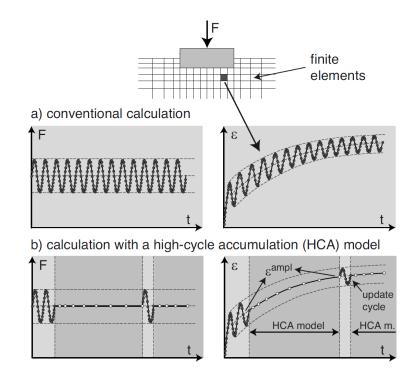


HCA for sand (Niemunis et al. 2005)

$$\dot{\sigma} = \text{E}: \left(\dot{\varepsilon} - \dot{\varepsilon}^{acc} - \dot{\varepsilon}^{pl}\right) \text{ with } \dot{\Box} = \partial \Box / \partial N$$

$$\dot{\varepsilon}^{acc} = \dot{\varepsilon}^{acc} m$$

$$\dot{\varepsilon}^{acc} = f_{ampl} \dot{f}_N f_e f_p$$

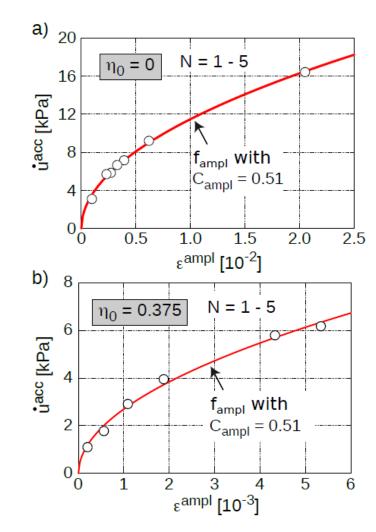


- HCA for clay (Staubach et al. 2021)
 - Intensity of accumulation:

$$\dot{\sigma} = \text{E}: \left(\dot{\varepsilon} - \dot{\varepsilon}^{acc} - \dot{\varepsilon}^{pl}\right) \text{ with } \dot{\Box} = \partial \Box / \partial N$$

$$\dot{\varepsilon}^{acc} = \dot{\varepsilon}^{acc} m$$

$$\dot{\varepsilon}^{acc} = f_{ampl} \dot{f}_N f_e f_\eta f_{OCR} f_f$$


- HCA for clay (Staubach et al. 2021)
 - Intensity of accumulation:
 - Influence of the strain amplitude

$$\dot{\boldsymbol{\sigma}} = \mathrm{E}: \left(\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}^{acc} - \dot{\boldsymbol{\varepsilon}}^{pl}\right) \text{ with } \dot{\boldsymbol{\sqcup}} = \partial \; \boldsymbol{\sqcup} / \partial N$$

$$\dot{\boldsymbol{\varepsilon}}^{acc} = \dot{\boldsymbol{\varepsilon}}^{acc} \boldsymbol{m}$$

$$\dot{\boldsymbol{\varepsilon}}^{acc} = f_{ampl} \dot{f}_N f_e f_\eta f_{OCR} f_f$$

$$\boldsymbol{f}_{ampl} = \left(\frac{\boldsymbol{\varepsilon}^{ampl}}{\boldsymbol{\varepsilon}_{ref}^{ampl}}\right)^{C_{ample}}$$

- HCA for clay (Staubach et al. 2021)
 - Intensity of accumulation:
 - Influence of the cyclic preloading

$$\dot{\sigma}=\mathrm{E}:\left(\dot{m{\varepsilon}}-\dot{m{\varepsilon}}^{acc}-\dot{m{\varepsilon}}^{pl}\right)$$
 with $\dot{\Box}=\partial\;\Box/\partial N$
$$\dot{m{\varepsilon}}^{acc}=\dot{m{\varepsilon}}^{acc}m{m}$$

$$\dot{m{\varepsilon}}^{acc}=f_{ampl}\dot{f}_{N}f_{e}f_{\eta}f_{OCR}f_{f}$$

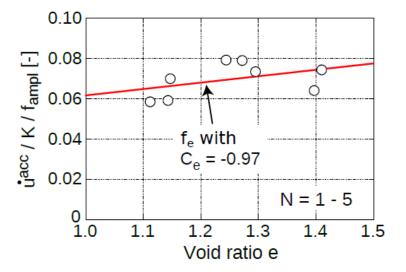
$$\dot{f}_{N}=\dot{f}_{N}^{A}+\dot{f}_{N}^{B}$$

$$\dot{f}_N^A = C_{N1}C_{N2} \exp\left[-\frac{g^A}{C_{N1}f_{ampl}}\right]$$

$$\dot{f}_N^A + \dot{f}_N^B$$

$$\dot{f}_N^B = C_{N1}C_{N3}$$

- HCA for clay (Staubach et al. 2021)
 - Intensity of accumulation:
 - Influence of the void ratio

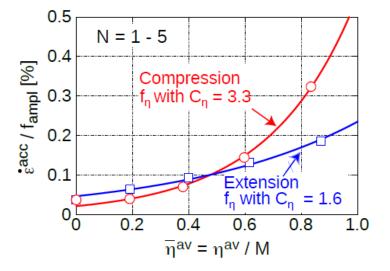

$$\dot{\boldsymbol{\sigma}} = \text{E:} \left(\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}^{acc} - \dot{\boldsymbol{\varepsilon}}^{pl} \right) \text{ with } \dot{\boldsymbol{\sqcup}} = \partial \; \boldsymbol{\sqcup} / \partial N$$

$$\dot{\boldsymbol{\varepsilon}}^{acc} = \dot{\boldsymbol{\varepsilon}}^{acc} \boldsymbol{m}$$

$$\dot{\boldsymbol{\varepsilon}}^{acc} = f_{ampl} \dot{f}_N f_e f_\eta f_{OCR} f_f$$

$$\boldsymbol{\downarrow}$$

$$f_e = \frac{\left(C_e - e \right)^2}{1 + e} \frac{1 + e_{ref}}{\left(C_e - e_{ref} \right)^2}$$

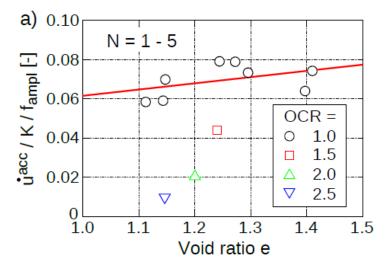

- HCA for clay (Staubach et al. 2021)
 - Intensity of accumulation:
 - Influence of the stress ratio

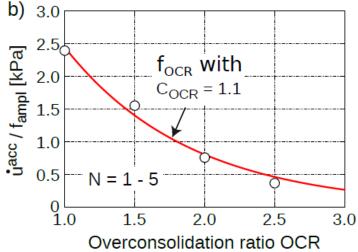
$$\dot{\sigma} = \text{E:} \left(\dot{\varepsilon} - \dot{\varepsilon}^{acc} - \dot{\varepsilon}^{pl} \right) \text{ with } \dot{\Box} = \partial \Box / \partial N$$

$$\dot{\varepsilon}^{acc} = \dot{\varepsilon}^{acc} \mathbf{m}$$

$$\dot{\varepsilon}^{acc} = f_{ampl} \dot{f}_N f_e f_\eta f_{OCR} f_f$$

$$f_\eta = \exp(C_\eta \bar{\eta}^{av})$$

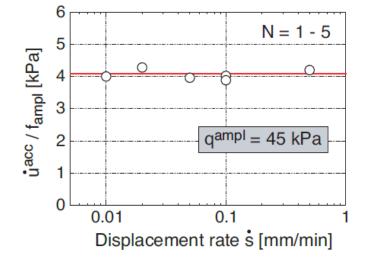

- HCA for clay (Staubach et al. 2021)
 - Intensity of accumulation:
 - Influence of the oveconsolidation ratio


$$\dot{\sigma} = \mathrm{E}: \left(\dot{\varepsilon} - \dot{\varepsilon}^{acc} - \dot{\varepsilon}^{pl}\right) \text{ with } \dot{\Box} = \partial \Box / \partial N$$

$$\dot{\varepsilon}^{acc} = \dot{\varepsilon}^{acc} m$$

$$\dot{\varepsilon}^{acc} = f_{ampl} \dot{f}_N f_e f_\eta f_{OCR} f_f$$

$$f_{OCR} = \exp(-C_{OCR}(\mathrm{OCR} - 1))$$

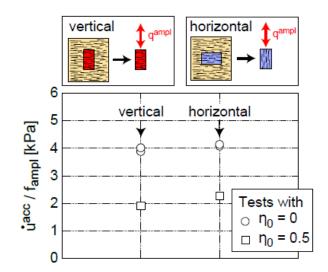


- HCA for clay (Staubach et al. 2021)
 - Intensity of accumulation:
 - Influence of the loading frequency

$$\dot{\sigma}=\mathrm{E}:\left(\dot{\pmb{\varepsilon}}-\dot{\pmb{\varepsilon}}^{acc}-\dot{\pmb{\varepsilon}}^{pl}\right)$$
 with $\dot{\Box}=\partial\;\Box/\partial N$
$$\dot{\pmb{\varepsilon}}^{acc}=\dot{\pmb{\varepsilon}}^{acc}\pmb{m}$$

$$\dot{\pmb{\varepsilon}}^{acc}=f_{ampl}\dot{f}_Nf_ef_\eta f_{OCR}f_f$$

$$f_f=1 \text{ (Kaolin)}$$



- HCA for clay (Staubach et al. 2021)
 - Intensity of accumulation:
 - o Influence of the loading direction with respect to the sedimentation axis

$$\dot{\sigma} = \text{E}: (\dot{\varepsilon} - \dot{\varepsilon}^{acc} - \dot{\varepsilon}^{pl}) \text{ with } \dot{\Box} = \partial \Box / \partial N$$

$$\dot{\varepsilon}^{acc} = \dot{\varepsilon}^{acc} m$$

$$\dot{\varepsilon}^{acc} = f_{ampl} \dot{f}_N f_e f_\eta f_{OCR} f_f$$

- HCA for clay (Staubach et al. 2021)
 - Direction of accumulation:

$$\dot{\boldsymbol{\sigma}} = \mathrm{E}: \left(\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}^{acc} - \dot{\boldsymbol{\varepsilon}}^{pl}\right) \text{ with } \dot{\boldsymbol{\Box}} = \partial \; \boldsymbol{\Box}/\partial N$$

$$\dot{\boldsymbol{\varepsilon}}^{acc} = \dot{\boldsymbol{\varepsilon}}^{acc} \boldsymbol{m}$$

$$\boldsymbol{m} = \left[\frac{1}{3} \left(p^{av} - \frac{(q^{av})^2}{M^2 p^{av}}\right) \mathbf{1} + \frac{3}{M^2} (\boldsymbol{\sigma}^{av})^*\right]^{\rightarrow}$$
 (similar to the MCC model approach)

- HCA for clay (Staubach et al. 2021)
 - Plastic strain
 - Associative flow rule

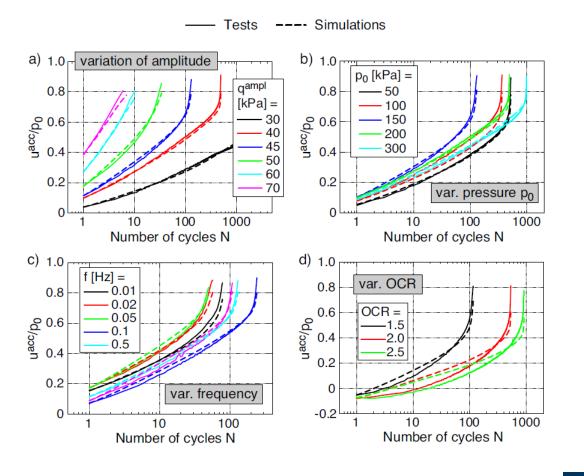
$$\dot{\boldsymbol{\sigma}} = \mathrm{E}: \left(\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}^{acc} - \dot{\boldsymbol{\varepsilon}}^{pl}\right) \text{ with } \dot{\boldsymbol{\Box}} = \partial \; \boldsymbol{\Box}/\partial N$$

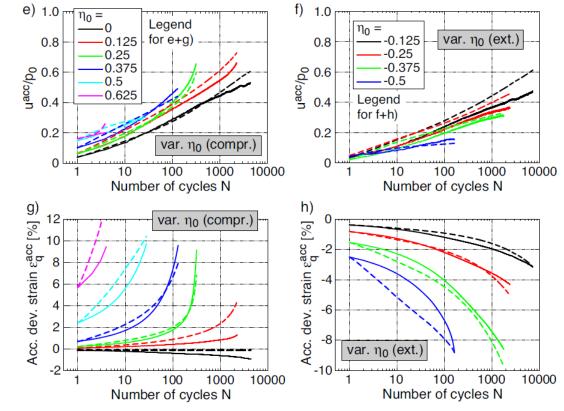
$$\dot{\boldsymbol{\varepsilon}}^{pl} = \dot{\phi} \frac{\partial F}{\partial \boldsymbol{\sigma}} = \dot{\phi} \mathbf{m}$$

Hypoelastic stiffness

$$\dot{\boldsymbol{\sigma}} = E: \left(\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}^{acc} - \dot{\boldsymbol{\varepsilon}}^{pl}\right) \text{ with } \dot{\boldsymbol{\Box}} = \partial \; \boldsymbol{\Box}/\partial N$$

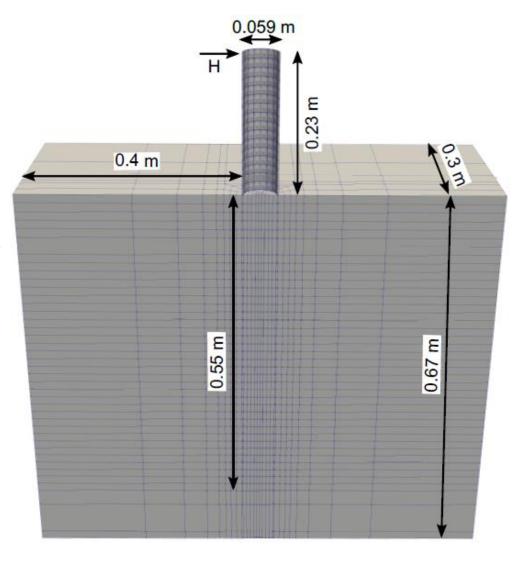
$$\downarrow \qquad \qquad E = K \; \mathbf{1} \otimes \mathbf{1} + 2\mu \; \mathbf{I}$$


$$K = \frac{1+e}{\kappa} p, \qquad \mu = \frac{3K(1-2\nu)}{2(1+\nu)}$$



- HCA for clay (Staubach et al. 2021)
 - Element tests of Kaolin

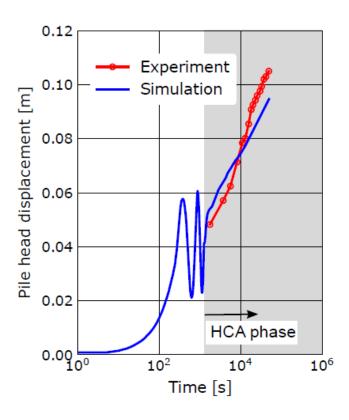
$f_{ m OCR}$	C_{ampl}	C_{N1}	C_{N2}	C_{N3}	C_e	C_{η}	$C_{ m OCR}$
OCR_0	0.6	0.00115	0.8	0.0	-0.97	2.9	0.5
OCR	0.8	0.00125	0.5				

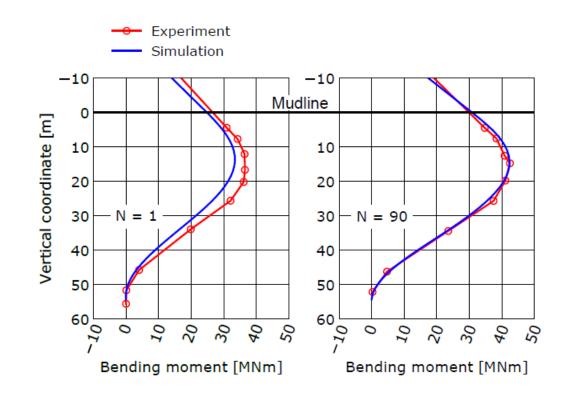


Back-analysis of centrifuge tests on monopiles in soft clay

Finite Element model with numgeo (Staubach et al. 2021)

- Application of the self-weight of the soil and pile at 1 g
- Application of increased gravity to 100 g by the centrifuge
- \circ Application of the average value of the lateral force $H_{av}=62.5~\mathrm{N}$
- Calculation of the first cycle, using the AVISA model
- The average load H_{av} was superposed by a sinusoidal cyclic load with the amplitude $H_{ampl}=37.5~\mathrm{N}$
- Calculation of the second cycle, using the AVISA model.
- Calculation of permanent deformations due to
 N = 100 further cycles using the HCA model.

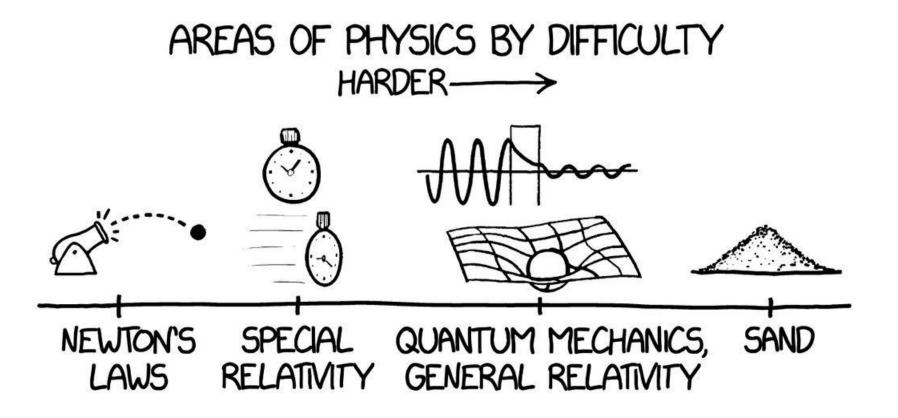




Back-analysis of centrifuge tests on monopiles in soft clay

> Finite Element simulation with numgeo (Staubach et al. 2021)

Summary and Conclusions


- Experimental investigations
- Explicite constitutive models
- Implicite constitutive models
- Calibration and verification

Function	Material constant	Ref. quant.
$f_{\rm ampl} = \left(\varepsilon^{\rm ampl}/\varepsilon_{\rm ref}^{\rm ampl}\right)^{C_{\rm ampl}}$	C_{ampl}	$arepsilon_{\mathrm{ref}}^{\mathrm{ampl}}$
$\dot{f}_N = \frac{C_{N1}C_{N2}}{1 + C_{N2}N} + C_{N1}C_{N3}$	C_{N1}, C_{N2}, C_{N3}	
$f_e = rac{(C_e - e)^2}{1 + e} \; rac{1 + e_{ m ref}}{(C_e - e_{ m ref})^2}$	C_e	$e_{ m ref}$
$f_{\eta} = \exp\left(C_{\eta} \ \eta^{\rm av} /M\right)$	C_{η}	
$f_{OCR} = \exp[-C_{OCR}(OCR - 1.0)]$	$C_{ m OCR}$	
$f_f = 1$	-	

Thank You!

